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ABSTRACT 

The present study was undertaken during the Kharif season of 2023 to evaluate 72 diverse rice genotypes 

for yield and quality-related traits under field conditions. The experiment followed a Randomized 

Complete Block Design (RCBD) with three replications. Principal Component Analysis (PCA) was 

employed to assess genetic variability and identify key traits contributing to overall divergence. Out of 

29 principal components extracted, the first ten with eigenvalues greater than one were retained, 

collectively explaining 83.13% of the total variation. Among these, PC1 alone accounted for 19.75% of 

the variation and was primarily associated with important yield attributes including biological yield per 

plant, panicle weight per plant, grain yield per plant, 1000-grain weight, days to 50% flowering, and 

panicle length indicating its significance for selection in yield improvement. The remaining components 

(PC2 to PC10) accounted for 3.34% to 12.93% of the variability and were associated with traits such as 

harvest index, grain length, decorticated grain L/B ratio, sterile spikelet percentage, milling quality, and 

days to maturity. High PCA scores identified superior genotypes such as GNV 2076, RP 6771, CSR 

HZR-5, RP 6771-IRRI-147, and NVSR 649, which exhibited desirable combinations of yield and quality 

traits and are considered potential donors for future breeding efforts. Genetic divergence estimated using 

Mahalanobis’ D² statistics revealed maximum inter-cluster distances between Clusters XVI and V 

(2853.06), XV and II (2783.51), and XII and II (2777.20), indicating substantial genetic variability. 

Crosses between genotypes from these distant clusters are likely to produce transgressive segregants and 

broaden the genetic base of rice. These findings offer valuable insights for designing effective selection 

and hybridization strategies in rice improvement programs. 
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Introduction 

Rice (Oryza sativa L., 2n=24), a self-pollinated, 

semi-aquatic annual grass, is one of the most important 

cereal crops globally, serving as the primary food 

source for over half of the world’s population. 

Belonging to the family Poaceae (Gramineae) and the 

genus Oryza, the rice gene pool comprises two 

cultivated species. O. sativa (Asian rice) and O. 

glaberrima (African rice) alongside 22 wild species. 

Of these wild relatives, 14 are diploid (2n=2x=24) and 

8 are tetraploid (2n=4x=48). While O. sativa is widely 

cultivated across the globe, O. glaberrima remains 

confined to limited regions in West Africa. 

Archaeological evidence suggests that wild rice was 

domesticated approximately 9,000 years ago, with 

early cultivation likely influenced by climatic 

challenges during the Neothermal age in East and 

Northern India. 

Taxonomically, the wild Oryza species are 

classified into four distinct complexes O. sativa, O. 

officinalis, O. meyeriana, and O. ridleyi based on their 

interspecific crossing compatibility. In India, rice is a 

staple crop with the second-highest production after 

wheat. The country has the largest rice-growing area 

globally, covering approximately 46 million hectares 

and producing about 132 million tonnes of milled rice 

annually, with an average productivity of 4560 kg/ha 

(USDA, 2020). Madhya Pradesh is a key rice-
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producing state, contributing 133.08 lakh metric tonnes 

from 38.50 lakh hectares, with an average yield of 

3462 kg/ha (Anonymous, 2023–24). Major rice-

growing districts in the state include Balaghat, 

Hoshangabad, Narsinghpur, Sagar, and Raisen, which 

benefit from favorable climatic conditions and diverse 

soil types. 

Globally, enhancing both grain yield and 

nutritional quality has become a primary focus of rice 

breeding programs. Malnutrition, particularly in Sub-

Saharan Africa and South and Southeast Asia, remains 

a pressing concern (Reddy et al., 2005). 

Biofortification the process of increasing the 

micronutrient content of staple crops through genetic 

improvement offers a sustainable solution to address 

deficiencies in iron, zinc, and vitamin A. Given the 

significance of rice, wheat, and maize in global diets, 

improving their nutritional value is critical to 

combating micronutrient malnutrition. 

Identifying genetically diverse parental lines is 

fundamental to the success of any crop improvement 

program. Genetic divergence plays a key role in 

generating variability and achieving transgressive 

segregants in breeding populations. The Mahalanobis 

D² statistic is a robust multivariate tool for assessing 

genetic diversity, enabling the identification of 

promising parents by quantifying both intra- and inter-

cluster divergence. It also reveals the relative 

contribution of various traits to total divergence, 

facilitating informed parental selection. 

However, analyzing multiple traits often results in 

complex data sets that can obscure key patterns. 

Principal Component Analysis (PCA), introduced by 

Pearson (1901) and formalized by Hotelling (1933), 

addresses this challenge by reducing data 

dimensionality. PCA transforms correlated variables 

into uncorrelated principal components that explain 

most of the variability in the dataset (Anderson, 1972; 

Morrison, 1982). This helps identify the traits most 

responsible for genetic variability and assists in 

ranking genotypes based on their component scores. 

The integration of D² statistics and PCA provides 

a comprehensive approach for evaluating genetic 

diversity and trait interrelationships. This study aims to 

characterize 72 bio fortified rice lines using both 

methods to identify genetically divergent and 

agronomically superior genotypes, thereby facilitating 

their use in future rice improvement programs. 

Materials and Methods 

The present investigation was carried out during 

the Kharif season of 2023 to evaluate 72 rice genotypes 

under field conditions. The experiment was laid out in 

a Randomized Complete Block Design (RCBD) with 

three replications at the designated experimental site. 

Twenty-day-old seedlings were transplanted into the 

main field, with each genotype sown in 12 rows of 5 

meters in length. Planting was done at a spacing of 15–

20 cm between hills, maintaining one seedling per hill. 

Missing hills were promptly gap-filled within a week 

after transplanting to ensure a uniform plant stand. 

The crop was fertilized with 100 kg N, 60 kg 

P₂O₅, and 40 kg K₂O per hectare. A full dose of 

phosphorus and potassium, along with half of the 

nitrogen, was applied as a basal dose during the final 

land preparation. The remaining nitrogen was split into 

two equal applications: one during the active tillering 

stage and the other at the grain-filling stage, following 

standard agronomic practices. 

Data collection adhered to the Distinctness, 

Uniformity, and Stability (DUS) test guidelines for 

rice. Observations were recorded on various yield-

contributing traits. For each genotype, five competitive 

plants were randomly selected from the middle rows of 

each replication. Traits related to panicle 

characteristics were recorded based on the mean of the 

largest, average, and smallest panicles from the 

selected plants. 

To assess genetic divergence, Mahalanobis' D² 

statistics were employed (Mahalanobis, 1936). 

Genotypic clustering was performed using Tocher’s 

method (Rao, 1952), and a dendrogram was 

constructed using Ward’s method based on Euclidean 

distance. To explore trait variability and reduce data 

dimensionality, Principal Component Analysis (PCA) 

was conducted following the methods of Massy (1965) 

and Jolliffe (1986). Principal components were 

extracted and ranked based on their contribution to 

total phenotypic variation, aiding in the identification 

of key traits and divergent genotypes for future 

breeding programs. 

Result and Discussion 

Genetic Divergence 

In the present study, significant genetic 

divergence was observed among the 72 rice genotypes 

for various agronomic and grain quality traits. Among 

the traits analyzed, grain length contributed the highest 

proportion to total genetic divergence (25.59%), 

followed by head rice recovery percentage (20.62%), 

thousand grain weight (20.19%), and sterile spikelets 

per plant (9.12%). Other notable contributors included 

fertile spikelets per plant (6.61%), decorticated grain 

length (5.09%), decorticated grain L/B ratio (2.35%), 

and panicle weight per plant (2.15%), panicle index 
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(1.96%), and grain yield per plant (1.78%). Traits such 

as productive tillers per plant (1.13%), harvest index 

(0.59%), days to flowering (0.55%), and days to 

maturity (0.47%) contributed relatively less to the total 

genetic variation. The least contributing traits were 

decorticated grain width (0.43%), milling percentage 

(0.35%), grain width (0.35%), plant height (0.23%), 

spikelet fertility percentage (0.20%), spikelet density 

(0.16%), and hulling percentage (0.08%) (Table 1). 

These results are consistent with the findings of 

Adhikari et al. (2018), highlighting the importance of 

grain traits in contributing to overall genetic diversity. 

 

Table 1: Percentage (%) contribution of traits towards divergence 

S. No. Character Time ranked 1
st
 

Percentage (%) contribution 

of traits towards divergence 

1 GL 654 25.59% 

2 HRR % 527 20.62% 

3 1000 GW 516 20.19% 

4 SSPP 233 9.12% 

5 FSPP 169 6.61% 

6 DGL 130 5.09% 

7 DG L/B 60 2.35% 

8 PWPP 55 2.15% 

9 PI 50 1.96% 

10 GYPP 45 1.76% 

11 NOPT 29 1.13% 

12 HI 15 0.59% 

13 DTF 14 0.55% 

14 DTM 12 0.47% 

15 DGW 11 0.43% 

16 M% 9 0.35% 

17 GW 9 0.35% 

18 PH 6 0.23% 

19 F% 5 0.20% 

20 SD 4 0.16% 

21 H% 2 0.08% 

 

 
Fig. 1: Contribution of individual characters towards genetic divergence 

 
Using Tocher’s method, the genotypes were grouped into 16 distinct clusters based on Mahalanobis’ D² 

statistics. Cluster I was the largest, comprising 51 genotypes, indicating a wide genetic base within this group. 
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Other notable clusters included Cluster IV, which contained 5 genotypes, and Cluster XI, with 2 genotypes. Rest 

of all clusters are monogenotypic. 

Table 2: Grouping of genotypes into various clusters 

S. No. 
Number of 

genotypes 
Genotypes 

Cluster-1 51 

CSR-2021-294-164, DRR-48, GNV 2076,CSR HZR-1, R-56, CK-35, RP 6731-BCRK/RIL 

BCRK-4, HURS 23-8, RNR-34998, RP 6514-IR128768-7-2-2-4, R-RHP-IC-148, ORR 

1814, RP 6167-RN-116, RP 6731-BCRK/RIL-BCRK-4-1-P, RP 6615-MK/RIL-FBM1-45-

1-5-1,Kalanamak 2020-3, CSR HZR 5, RP 6615-MK/RIL-FBMI-2-1, RP 6731-BCRK/RIL-

BCRK-9, DRR-45, SKL 10-15-593-162-25-106-70, NDR 8399-2, IR 124041-B-3-1-1-

B,Gurmatiya sel.1, R-RHP-IC-148, RNR 31672, AD 21270, CSR HZR 5, CSR H3R 17-42, 

R-RHP-IR-142, NVSR 658, RP 6211-PR/RILQ 181, DRR Dhan-45, GNV 2075 

Cluster-2 1 DRR Dhan-49 

Cluster-3 1 RP 6211-PR/RIL-181 

Cluster- 4 5 RP 6771-IRRI-14, Chittimuthyalu, RP 6195-MC/RIL-SM5A-60, AD 21205, NVSR 649 

Cluster-5 1 KALANAMAK 

Cluster-6 1 UPR 2879-98-105 

Cluster-7 1 BPT 5204 

Cluster-8 1 HURS-22-3 

Cluster-9 1 RP 6458-C1-151 

Cluster-10 1 CK 145-3 

Cluster-11 2 RP 6615-MK/RIL-FBMI-45-1-5-1,NVSR 787 

Cluster-12 1 DRR-48 

Cluster13 1 NVSR 787 

Cluster 14 1 UPR 4640-11-1-1-1 

Cluster 15 1 IR-64 

Cluster 16 1 RP Bio 4918-NPS 21 

 

Analysis of intra-cluster divergence revealed that 

Cluster IV exhibited the highest intra-cluster D² value, 

suggesting considerable variability among its 

constituent genotypes. This was followed by Cluster I 

(479.12) and Cluster XI (433.63). Inter-cluster 

divergence estimates showed that the maximum 

genetic distance was observed between Clusters XVI 

and V (2853.06), indicating substantial genetic 

divergence between these groups. Other notable high 

inter-cluster distances included Clusters XV and II 

(2783.51), XII and II (2777.20), XII and XI (2510.62), 

and XV and V (2496.03). The lowest inter-cluster 

divergence was observed between Clusters XII and XV 

(2252.87). 

The distribution pattern of genotypes across 

clusters suggests a random dispersion, reflecting a 

broad genetic base within the studied germplasm. High 

inter-cluster distances indicate substantial genetic 

divergence among clusters, implying that hybridization 

between genotypes from these clusters could 

potentially result in heterotic combinations and 

enhanced transgressive segregation in segregating 

populations. Furthermore, substantial intra-cluster 

divergence observed in poly-genotypic clusters such as 

Cluster I and Cluster IV also offers opportunities for 

selecting diverse parents from within these clusters. 

These findings are in agreement with previous reports 

by Verma et al. (2000) and Chakraborty et al. (2010) 

particularly for traits such as sterile spikelets per 

panicle, grain yield per plant, biological yield, and 

productive tillers per plant. 

Principal Component Analysis: 

In the present study Principal Component 

Analysis (PCA) was employed to understand the 

underlying structure of variation among 30 agro-

morphological and quality traits and found 10 principal 

components exhibited eigenvalues greater than 1.0 and 

cumulatively explained 83.13% of the total variation 

among the traits studied. The first principal component 

(PC1) alone accounted for the maximum variance 

(19.75%), followed by PC2 (12.93%), PC3 (11.07%), 

PC4 (8.70%), PC5 (6.99%), PC6 (6.16%), PC7 

(5.24%), PC8 (4.96%), PC9 (3.95%), and PC10 

(3.34%). This pattern of variance distribution is 

consistent with the findings reported by Haque et al. 

(2014), confirming the robustness of PCA in 

summarizing trait variability (Table 3). The Eigen 

value of PC1 was 5.927 indicating a 19.755 percent 

variability that thereafter decreased progressively as 

seen in the scree plot (Figure 2). 
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Table 3: Cumulative variability (more than 1 Eigen value) 

Character PC Value Eigen value Variability (%) 
Cumulative 

variability 

DTF PC-1 5.927 19.755 19.755 

DTM PC-2 3.880 12.934 32.689 

NOT PC-3 3.321 11.071 43.760 

NOPT PC-4 2.612 8.705 52.465 

SL PC-5 2.098 6.994 59.459 

PL PC-6 1.848 6.161 65.620 

FLL PC-7 1.573 5.244 70.865 

FLW PC-8 1.489 4.964 75.828 

ST PC-9 1.187 3.956 79.785 

SWPP PC-10 1.004 3.348 83.133 

PWPP PC-11 0.964 3.213 86.346 

BYPP PC-12 0.821 2.735 89.082 

FSPP PC-13 0.631 2.102 91.183 

SSPP PC-14 0.624 2.078 93.262 

SF % PC-15 0.470 1.565 94.827 

TSPP PC-16 0.413 1.376 96.203 

SD PC-17 0.310 1.032 97.235 

PI PC-18 0.227 0.757 97.993 

HI PC-19 0.180 0.601 98.594 

GL PC-20 0.165 0.550 99.144 

GW PC-21 0.103 0.343 99.488 

DGL PC-22 0.079 0.265 99.752 

DGW PC-23 0.028 0.092 99.844 

H % PC-24 0.017 0.057 99.901 

M % PC-25 0.014 0.048 99.949 

HRR % PC-26 0.009 0.028 99.977 

TGW PC-27 0.004 0.013 99.990 

DG L/B PC-28 0.003 0.010 100.000 

GYPP PC-29 0.000 0.000 100.000 

 

 
Fig. 2: Scree plot showing the trend in the percentage of Variance for each individual principal component. 

The rotated component matrix provided deeper 

insights into the contribution of individual traits to 

each principal component. PC1, which captured the 

highest variability, was predominantly associated with 

yield-contributing traits such as biological yield per 

plant, panicle weight per plant, grain yield per plant, 
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thousand grain weight, days to 50% flowering, and 

panicle length. PC2 was mainly associated with harvest 

index, grain length, decorticated grain L/B ratio, 

decorticated grain length, and spikelet fertility 

percentage. PC3 captured variation due to spikelet 

density, total spikelets per plant, fertile spikelets per 

plant, and stem thickness, while PC4 was influenced 

by number of tillers and productive tillers per plant. 

PC5 reflected variation in stem length, flag leaf length, 

grain width, and plant height (Table 4). The sixth and 

seventh principal components were primarily 

influenced by sterile spikelets per panicle and 

decorticated grain width, findings which support the 

results of Wattoo et al. (2010). PC8 captured hulling 

percentage and milling percentage, whereas PC9 was 

defined by head rice recovery percentage, flag leaf 

width, and straw weight per plant. PC10 was mainly 

represented by days to maturity, which corroborates 

the findings of Gour et al. (2017). 

 

Table 4 : Interpretation of Rotated Component Matrix for the Traits Having Highest Value in Each PCs. 
PC-1 PC-2 PC-3 PC-4 PC-5 PC-6 PC-7 PC-8 PC-9 PC-10 

BYPP HI SD NOT SL SSPP DGW H% HRR% DTM 

PWPP GL TSPP NOPT GW   M % FLW  

GYPP DGL/B FSPP  FLL    SWPP  

TGW DGL ST  PH      

DTF F %         

PL          
 

Table 5 : PC scores of rice lines. 

Genotype PC-1 PC-2 PC-3 PC-4 PC-5 PC-6 PC-7 PC-8 PC-9 PC-10 

R-RHP-IC-148 -3.469 1.569 0.395 -1.505 0.154 1.257 -1.066 0.712 -1.199 0.171 

RNR 31668 -1.892 1.344 -0.474 -1.324 -0.774 0.444 1.656 1.277 -1.808 0.621 

CSR HZR 1 -0.911 0.599 -0.688 -1.796 1.256 -0.076 0.861 0.290 0.623 0.448 

AD 21270 -1.958 -1.372 0.225 -1.540 0.193 0.889 1.242 1.053 -0.919 -1.800 

CK 145-3 -1.868 -0.811 0.776 -1.237 -3.990 -2.929 -0.128 -1.835 -2.075 0.329 

RP 6731-BCRK/RIL-BCRK-4 0.523 1.731 1.282 -0.173 -0.778 -0.336 -1.783 1.077 0.790 -0.797 

RP Bio 4918-NPS 21 -0.447 -2.861 1.246 2.196 -2.434 -1.649 1.708 -1.557 -3.594 1.357 

GNV 2076 -0.447 -2.861 1.246 2.196 -2.434 -1.649 1.708 -1.557 -3.594 1.357 

CSR HZR 5 1.107 2.562 0.777 -0.840 1.013 -0.616 -1.078 -0.230 -0.648 0.262 

RP 6771-IRRI-147 -0.093 3.019 -0.915 2.133 -1.518 -0.701 -1.460 0.169 1.120 1.068 

NVSR 649 1.658 0.773 -0.900 -3.444 0.739 0.319 3.853 2.385 0.961 1.204 

CR 4225-B-1-1-2 2.007 -2.200 -0.553 -2.331 -2.104 2.549 -0.704 0.647 -0.262 1.589 

BPT 5204 (Yield Check) 0.600 -1.511 -0.729 -2.453 2.511 -2.308 -0.478 0.651 -0.311 1.570 

RP 6514-IR128768-7-2-2-4 -2.193 -0.827 -0.409 1.323 0.437 -1.516 -1.950 0.984 -0.472 -0.036 

RP 6615-MK/RIL-FBMI-2-1 -7.117 -1.689 -0.305 1.258 1.163 1.410 1.177 -2.066 1.472 -0.602 

NVSR 787 -1.477 1.091 -0.959 2.273 1.269 0.342 3.115 0.476 0.189 0.282 

UPR 4640-11-1-1-1 1.128 0.917 -1.536 0.907 0.293 0.523 1.692 0.001 -1.234 0.763 

Gurmatiya sel.1 4.006 4.359 0.110 -0.279 1.927 1.219 -0.648 -2.584 -1.858 0.277 

IR 124041-B-3-1-1-B 0.653 1.916 4.537 3.129 2.899 0.528 0.313 0.063 0.599 -1.773 

GNV 2075 -3.438 -2.609 0.400 -2.018 1.001 -0.699 -0.150 -1.835 1.237 1.425 

RP 6458-C1-151 1.223 1.967 -1.879 -2.505 0.371 -0.158 -0.242 -1.211 -0.941 0.766 

IR-64 (Yield Check) 0.813 -0.420 -1.093 -3.249 0.505 -0.073 0.167 -1.215 -1.038 -0.972 

HURS 23-10 0.579 1.676 2.182 -0.575 1.158 -0.526 1.119 -0.952 -1.813 -0.651 

RNR 31672 1.282 1.291 2.542 -0.513 -0.324 3.919 -0.805 -0.522 -0.561 0.584 

RP 6731-BCRK/RIL-BCRK-9 -0.759 3.663 -0.073 -0.382 0.336 -0.266 1.411 1.952 -0.543 -0.888 

CK 35-3 0.127 0.470 1.782 -0.400 1.535 -0.924 0.363 -0.790 0.898 -0.210 

CSR 2021-294-164 1.789 -0.281 2.750 0.132 -0.087 0.219 0.800 -0.094 -1.001 0.060 

AD 21205 -1.453 1.391 -0.206 -1.010 -0.157 -0.343 0.848 -0.312 -0.269 0.591 

ORR 1814 0.036 2.491 -0.632 -0.086 -0.763 -0.821 -0.098 1.499 -1.087 -0.920 

RP 6195-MC/RIL-SM4A-A57 -0.079 -3.520 1.541 -1.126 3.959 -0.090 -0.525 0.274 -0.692 0.728 

CB 21102 4.067 -1.201 -2.395 -1.708 1.526 -0.147 0.011 -0.844 1.014 -0.530 

DRR Dhan-45 3.013 -0.070 -0.913 0.882 1.126 -0.026 1.167 -1.518 -1.953 -2.086 

SKL 10-15-593-162-25-106-70 1.254 1.496 -1.581 0.412 0.144 1.346 0.232 -0.217 1.473 0.308 



 

 

2959 Hariom Parmar et al. 

RP 6731-BCRK/RIL-BCRK-4-1-P 2.650 1.196 -1.498 -0.024 0.507 0.056 1.600 -0.667 -0.046 -0.096 

CR 4107-1-B-4-1-B 3.163 1.047 0.342 1.148 1.365 0.114 1.099 -0.225 0.583 -0.151 

R-56 -2.410 0.318 -0.300 0.960 -0.696 1.004 -2.384 -1.814 -1.154 -0.502 

R-RHP-IR-142 -2.445 2.122 -0.331 -1.095 -0.811 -0.418 -1.696 1.338 0.352 -0.175 

DRR Dhan-48 -4.945 2.690 -3.129 0.789 0.205 0.839 -0.089 -2.874 0.694 0.335 

HURS 23-8 2.004 -1.320 1.409 1.217 1.409 -1.312 1.864 -0.101 0.024 0.053 

RNR 34998 -1.798 2.856 -1.545 -0.332 -1.071 0.124 -0.507 0.627 -0.627 -1.162 

RP 6615-MK/RIL-FBM1-45-1-5-1 0.709 3.449 0.715 -0.344 -0.090 -0.636 -0.730 -0.088 0.823 1.025 

RP 6167-RN-116 -2.088 1.864 0.376 -0.017 -1.237 0.527 0.575 -1.147 0.801 -0.307 

NVSR 658 -2.118 1.432 -0.451 0.178 -1.787 -0.105 1.485 0.211 1.195 -0.307 

CR 4199-2-B-1-2-B-2 -0.680 0.315 -1.560 -1.333 -2.112 -0.871 -0.074 -0.092 0.619 -0.216 

Kalanamak 2020-3 -0.002 -1.258 -0.675 0.791 -1.239 -1.919 1.283 -1.425 0.479 -0.996 

CSR H3R 17-42 -3.431 1.624 -0.880 2.022 1.278 0.163 -0.484 1.859 -0.187 3.651 

RP 6195-MC/RIL-SM5A-60 -1.717 0.327 -0.603 0.221 -0.700 0.383 -0.236 0.657 0.911 -0.035 

Chittimuthyalu 1.635 -2.425 -1.011 -0.911 0.708 0.974 -0.077 -0.097 0.415 -0.582 

UPR 2879-98-105 -0.344 -5.476 -4.055 -4.022 1.279 -0.593 -1.307 -0.300 -0.166 -1.783 

RP 6733-SP-M-KS-57-4-5 0.715 2.085 -0.627 -1.608 -0.397 0.475 -2.408 -2.556 0.905 0.350 

NDR 8418-3 4.404 -1.954 1.160 -0.154 0.083 0.022 -1.498 0.560 0.274 1.066 

HURS 22-3 4.758 -1.355 1.142 1.263 0.752 0.141 -1.904 -0.360 0.242 0.233 

RP 6615-MK / RIL- FBMI 45-1-5-1 -3.906 -3.010 3.655 -0.758 0.888 -2.480 -0.696 0.597 -0.033 0.479 

RP 6204-MB/RIL-J159 1.646 -1.387 1.009 1.383 -0.496 0.466 1.481 -2.185 2.169 0.142 

Chapti Gurmatiya Mutant-4 3.477 -2.301 0.335 0.335 -1.221 -0.402 -0.807 -0.065 0.716 2.113 

RP 6211-PR/RIL-Q181 0.086 -1.235 -0.852 2.832 -1.481 -0.040 0.045 -0.819 1.359 -0.277 

NDR 8399-2 4.748 0.030 -2.005 0.014 -1.195 -0.643 -0.486 2.626 -0.041 -1.951 

GNV 1922-16 -0.861 1.610 3.367 -0.572 0.631 0.164 -0.201 1.745 0.020 -0.258 

Chittimuthyalu 1.465 0.301 4.953 0.273 0.790 -0.729 -1.839 -0.855 0.806 -0.276 

RP 6204-MB/RIL-J159 -5.019 -0.754 3.556 0.364 -0.419 -1.697 0.157 1.858 -0.778 -0.565 

RP 6615-MK / RIL- FBMI 45-1-5-1 1.524 -2.272 0.246 0.795 -1.687 0.513 2.139 -0.279 0.395 1.250 

-(R-RHP-IR-142) 1.606 -2.552 2.283 0.288 -2.772 3.611 0.852 0.140 -1.040 -0.420 

RP 6211-PR/RIL-Q181 0.164 -2.081 0.167 0.991 -0.919 0.269 0.685 0.376 1.423 1.141 

HURS 22-3 2.014 -0.887 -0.828 0.099 -1.157 -1.161 -0.457 2.078 0.283 -0.499 

GNV 1906 1.481 1.821 -2.391 -0.602 -0.519 0.282 -0.131 1.193 1.195 0.461 

CSR HZR 5 1.605 0.039 0.247 0.942 -2.044 -3.649 -0.302 -0.190 0.779 0.070 

R-RHZ-IR-140 2.228 -0.400 2.621 0.813 0.219 0.288 -0.573 0.730 1.197 -1.037 

DRR-45 1.147 -1.375 -0.337 1.039 -3.570 0.698 -0.043 0.291 0.853 -1.795 

DRR-48 -0.940 0.046 -0.946 0.859 -0.143 -0.284 -1.869 1.077 0.251 -0.330 

DRR-49 -2.401 -2.774 -2.612 2.666 2.538 0.159 0.441 1.177 0.988 -0.575 

IR-64 -2.494 -3.353 -0.041 1.145 -0.226 5.397 -1.464 1.545 -1.333 0.363 

 

From this analysis, it is evident that most of the 

key yield-contributing traits were grouped under PC1, 

PC2, PC3, and PC5. Therefore, genotypes associated 

with these components may serve as potential donors 

in yield improvement breeding programs (Table 5). 

Similarly, for enhancing grain quality, traits clustered 

under PC4, PC6, and PC7 could be targeted, as these 

components captured variation associated with quality 

attributes. The differentiation of traits into specific PCs 

highlights the efficiency of PCA in identifying 

components governing yield and quality, thereby 

offering a strategic basis for genotype selection. 

Consequently, integrating this information into a 

breeding program would facilitate the development of 

high-yielding genotypes with desirable quality traits by 

selecting superior lines from the appropriate principal 

components. 

Conclusion 

The present investigation revealed significant 

genetic divergence among rice genotypes for yield and 

quality traits. Grain length, head rice recovery, and 

1000-grain weight contributed most to total 

divergence, indicating their potential in trait-based 

selection. PCA and D² statistics identified highly 

diverse genotypes such as GNV 2076, RP 6771, CSR 

HZR-5, and RP 6771-IRRI-147, which showed 

superior performance for both yield and grain quality. 

Clusters XVI & V, XV & II, and XII & II exhibited 

maximum inter-cluster distances, making them ideal 
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candidates for hybridization to exploit heterosis and 

obtain transgressive segregants. These findings support 

the strategic selection of parents from diverse clusters 

to enhance genetic variability and develop high-

yielding, quality-rich rice cultivars through effective 

breeding programs. 
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